On a discrete-to-continuum convergence result for a two dimensional brittle material in the small displacement regime
نویسندگان
چکیده
We consider a two-dimensional atomic mass spring system and show that in the small displacement regime the corresponding discrete energies can be related to a continuum Griffith energy functional in the sense of Γ-convergence. We also analyze the continuum problem for a rectangular bar under tensile boundary conditions and find that depending on the boundary loading the minimizers are either homogeneous elastic deformations or configurations that are completely cracked generically along a crystallographic line. As applications we discuss cleavage properties of strained crystals and an effective continuum fracture energy for magnets.
منابع مشابه
VOLUME MINIMIZATION WITH DISPLACEMENT CONSTRAINTS IN TOPOLOGY OPTIMIZATION OF CONTINUUM STRUCTURES
In this paper, a displacement-constrained volume-minimizing topology optimization model is present for two-dimensional continuum problems. The new model is a generalization of the displacement-constrained volume-minimizing model developed by Yi and Sui [1] in which the displacement is constrained in the loading point. In the original model the displacement constraint was formulated as an equali...
متن کاملOn the Six Node Hexagon Elements for Continuum Topology Optimization of Plates Carrying in Plane Loading and Shell Structures Carrying out of Plane Loading
The need of polygonal elements to represent the domain is gaining interest among structural engineers. The objective is to perform static analysis and topology optimization of a given continuum domain using the rational fraction type shape functions of six node hexagonal elements. In this paper, the main focus is to perform the topology optimization of two-dimensional plate structures using Evo...
متن کاملبررسی عددی تأثیر خصوصیات خاک بر باندهای برشی
In some natural events such as soil failure the deformations are localized in narrow restrictions, which are called shear bands. This event which is a fundamental phenomenon in granular material, has been widely investigated during recent decades within expensive experimental tests and also some numerical simulations. Most of previously used numerical methods are based on continuum theories des...
متن کاملBack-calculation of mechanical parameters of shell and balls materials from discrete element method simulations
Discrete Element Method (DEM) is extensively used for mathematical modeling and simulating the behavior of discrete discs and discrete spheres in two and three dimensional space, respectively. Prediction of particles flow regime, power draw and kinetic energy for a laboratory or an industrial mill is possible by DEM simulation. In this article, a new approach was used to assess the main paramet...
متن کاملNonlocal Effect on Buckling of Triangular Nano-composite Plates
In the present study, small scale effect on critical buckling loads of triangular nano- composite plates under uniform in-plane compression is studied. Since at nano-scale the structure of the plate is discrete, the size dependent nonlocal elasticity theory is employed to develop an equivalent continuum plate model for this nanostructure incorporating the changes in its mechanical behavior. The...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- NHM
دوره 10 شماره
صفحات -
تاریخ انتشار 2015